A Knowledge-Based Ant Colony Optimization for a Grid Workflow Scheduling Problem

نویسندگان

  • Yan-Li Hu
  • Lining Xing
  • Wei Ming Zhang
  • Weidong Xiao
  • Daquan Tang
چکیده

Service-oriented grid environment enables a new way of service provisioning based on utility computing models, where users consume services based on their QoS (Quality of Service) requirements. In such “pay-per-use” Grids, workflow execution cost must be considered during scheduling based on users’ QoS constraints. In this paper, we propose a knowledge-based ant colony optimization algorithm (KBACO) for grid workflow scheduling with consideration of two QoS constraints, deadline and budget. The objective of this algorithm is to find a solution that minimizes execution cost while meeting the deadline in terms of users’ QoS requirements. Based on the characteristics of workflow scheduling, we define pheromone in terms of cost and design a heuristic in terms of latest start time of tasks in workflow applications. Moreover, a knowledge matrix is defined for the ACO approach to integrate the ACO model with knowledge model. Experimental results show that our algorithm achieves solutions effectively and efficiently.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Pheromone Update Rule To Implement Ant Colony Optimization algorithm for Workflow Scheduling Algorithm Problem in Grids

In grid environment, applications are often described as workflows. A workflow iscomposed of atomic tasks that are processed in specific order to fulfill a complicated goal. Generally, grid workflows require more intensive computing and process larger data,compared with traditional workflow Therefore, the performance of grid workflows becomes a critical issue of the workflow management systems....

متن کامل

Resource leveling scheduling by an ant colony-based model

In project scheduling, many problems can arise when resource fluctuations are beyond acceptable limits. To overcome this, mathematical techniques have been developed for leveling resources. However, these produce a hard and inflexible approach in scheduling projects. The authors propose a simple resource leveling approach that can be used in scheduling projects with multi-mode execution activit...

متن کامل

Enhanced Ant Colony Algorithm Hybrid with Particle Swarm Optimization for Grid Scheduling

This chapter proposes new heuristic algorithms to solve grid scheduling problem. Two heuristic algorithms, based on Ant Colony Optimization and Particle Swarm Optimization are proposed. The optimization criteria, namely, flowtime and makespan are used to measure the quality of grid scheduling algorithm. Using the simulated benchmark instances, the results of different algorithms are analyzed an...

متن کامل

A Survey: Particle Swarm Optimization-based Algorithms for Grid Computing Scheduling Systems

Bio-inspired heuristics have been promising in solving complex scheduling optimization problems. Several researches have been conducted to tackle the problems of task scheduling for the heterogeneous and dynamic grid systems using different bio-inspired mechanisms such as Genetic Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO). PSO has been proven to have a rela...

متن کامل

Balanced Job Scheduling Based on Ant Algorithm for Grid Network

Job scheduling in grid computing is a very important problem. To utilize grids efficiently, we need a good job scheduling algorithm to assign jobs to resources in grids. The main scope of this paper is to propose a new Ant Colony Optimization (ACO) algorithm for balanced job scheduling in the Grid environment. To achieve the above goal, we will indicate a way to balance the entire system load w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010